# STATE EMERGENCY SERVICE



# TASMANIAN STRATEGIC FLOOD MAP WELCOME-DUCK CATCHMENT MODEL CALIBRATION

# REPORT





**MARCH 2023** 



Level 1, 119 Macquarie Street Hobart, TAS, 7000

Tel: (03) 6111 1726 Fax: (02) 9262 6208 Email: wma@wmawater.com.au Web: www.wmawater.com.au

#### TASMANIAN STRATEGIC FLOOD MAP WELCOME-DUCK CATCHMENT MODEL CALIBRATION

#### REPORT

MARCH 2023

| <b>Project</b><br>Tasmanian Strategic Flood Map<br>Welcome-Duck Catchment Model Calibration | Project Number<br>120038                |
|---------------------------------------------------------------------------------------------|-----------------------------------------|
| Client<br>STATE EMERGENCY SERVICE                                                           | Client's Representative<br>Chris Irvine |
| Project Manager                                                                             |                                         |
| Fiona Ling                                                                                  |                                         |

#### **Revision History**

| Revision | Description                 | Distribution         | Authors                                    | Reviewed<br>by | Verified<br>by   | Date   |
|----------|-----------------------------|----------------------|--------------------------------------------|----------------|------------------|--------|
| 0        | Draft report for review     | Luke Roberts,<br>SES | Sarah Blundy,<br>Fiona Ling,<br>Evmen Wong | Daniel<br>Wood | Mark<br>Babister | FEB 22 |
| 1        | Revised report              | Luke Roberts,<br>SES | Sarah Blundy,<br>Fiona Ling,<br>Evmen Wong | Daniel<br>Wood | Mark<br>Babister | MAR 22 |
| 2        | Report with minor revisions | Chris Irvine,<br>SES | Sarah Blundy,<br>Fiona Ling,<br>Evmen Wong | Daniel<br>Wood | Mark<br>Babister | MAR 23 |

Cover image: Flooded Montagu River in far north west Tasmania October 2019. https://www.abc.net.au/news/2019-10-24/flooded-montagu-river-in-far-north-west-tasmania-october-2019-1/11632524?nw=0



#### TASMANIAN STRATEGIC FLOOD MAP WELCOME-DUCK CATCHMENT MODEL CALIBRATION

# TABLE OF CONTENTS

#### PAGE

| LIST OF | ACRONY               | ИSvi                                          |  |
|---------|----------------------|-----------------------------------------------|--|
| 1.      | INTRODUCTION1        |                                               |  |
| 2.      | STUDY AREA2          |                                               |  |
| 3.      | AVAILABLE DATA       |                                               |  |
|         | 3.1.                 | Historic Flow Data and Level Data3            |  |
|         | 3.1.1.               | Calibration Event Data Availability4          |  |
|         | 3.1.2.               | Rating Curve Quality4                         |  |
|         | 3.2.                 | Historic Rainfall Data9                       |  |
|         | 3.3.                 | Dam Information10                             |  |
| 4.      | METHOD               | OLOGY OVERVIEW11                              |  |
| 5.      | HYDROD               | YNAMIC MODEL SETUP12                          |  |
|         | 5.1.                 | Digital Elevation Model (DEM)12               |  |
|         | 5.2.                 | Roughness15                                   |  |
|         | 5.3.                 | Meshing16                                     |  |
|         | 5.4.                 | Structures                                    |  |
|         | 5.5.                 | Dams18                                        |  |
|         | 5.6.                 | Downstream Boundaries18                       |  |
|         | 5.7.                 | Flow Application for Hydrodynamic Modelling19 |  |
|         | 5.7.1.               | ICM-RAFTS Sub-catchment Routing20             |  |
| 6.      | CALIBRATION RESULTS2 |                                               |  |
|         | 6.1.                 | Sub-catchment Routing and Loss Parameters21   |  |
|         | 6.2.                 | Initial Conditions22                          |  |
|         | 6.3.                 | Gauge Results22                               |  |
|         | 6.3.1.               | Duck River u/s Scotchtown Road23              |  |
|         | 6.4.                 | Identified Issues26                           |  |
| 7.      | UNCERT               | AINTY ASESSMENT                               |  |

| 8.     | REFERE | NCES                                              | 29          |
|--------|--------|---------------------------------------------------|-------------|
| APPEND | DIX A. | AVALIABLE DATA                                    | A.1         |
|        | A.1.   | Sub catchment data                                | A.1         |
| APPEND | DIX B. | UNCERTAINTY ANALYSIS                              | B.1         |
|        | B.1.   | Hydrologic Model Uncertainty                      | B.1         |
|        | B.2.   | DTM Uncertainty                                   | B.3         |
|        | B.3.   | Hydrodynamic Modelling Uncertainty                | B.4         |
| APPEND | DIX C. | EXTERNAL HYDROLOGY MODEL AND ICM HYDRODYNAMIC MOD | EL          |
|        | COMPAR | RISON                                             | <b>C</b> .1 |
| APPEND | DIX D. | RATING CURVE COMPARISON                           | D.1         |



### LIST OF TABLES

| Table 1: Flow gauges                                                         | 3         |
|------------------------------------------------------------------------------|-----------|
| Table 2: Summary of the largest events in the Welcome-Duck study area used   | for model |
| calibration.                                                                 | 4         |
| Table 3: Available Rainfall Information                                      | 9         |
| Table 4: Dam information                                                     | 10        |
| Table 5: Calibrated parameters and results at Duck River u/s Scotchtown Road | 24        |
| Table 6: Uncertainty assessment for Welcome Duck study area model            | 27        |

#### LIST OF FIGURES

Figure 1: Welcome-Duck Study Area

Figure 2: Welcome-Duck Study Area Land Use

Figure 3: Welcome-Duck Jul 2000 Rainfall

Figure 4: Hydrodynamic model results - depth, July 2000 event

#### **APPENDICES:**

Figure A 1 Dominant sub-catchment soil group

Figure A 2 Subcatchment average PERN

Table B 1: Hydrology calibration event rating

Table B 2: Hydrology calibration quality rating

Table B 3: DTM rating

Table B 4: Hydrodynamic calibration event rating

Table B 5: Hydrodynamic calibration quality rating

Figure C 1: Event hydrographs

Figure D 1: Rating comparison - Duck River u/s Scotchtown Road Bridge, July 2000 event

#### LIST OF DIAGRAMS

| Diagram 2: Flows downloaded from DPIPWE data portal for July 2000 event (Source DPIPWE 2022)    |
|-------------------------------------------------------------------------------------------------|
| 2022)                                                                                           |
| Diagram 3: Montague River stage height and flow showing drop in flow not corresponding to       |
|                                                                                                 |
| change in stage height (Source DPIPWE 2022)6                                                    |
| Diagram 4: Montagu River at Stuarts Road revised rating (from WMAwater 2021c)7                  |
| Diagram 5: Duck River u/s Scotchtown Road ratings, current rating shown in red (screenshot from |
| Bureau of Meteorology, 2021)7                                                                   |
| Diagram 6: Duck River at Scotchtown Road revised rating (from WMAwater 2021c)                   |
| Diagram 7: Welcome River at Woolnorth ratings, current rating shown in red (screenshot from     |
| Bureau of Meteorology, 2021)                                                                    |
| Diagram 8: Sub-daily rainfall gauges, July 2000 (from WMAwater, 2021d)                          |
| Diagram 9: DEM of the Welcome-Duck study area12                                                 |



| Diagram 10: 'Default DTM' extents for the Welcome-Duck study area                         | 13 |
|-------------------------------------------------------------------------------------------|----|
| Diagram 11: Welcome River catchment modelled flood extent                                 | 14 |
| Diagram 12: Montagu River catchment modelled flood extent                                 | 15 |
| Diagram 13: Roughness layer for the Welcome-Duck study area                               | 16 |
| Diagram 14: Mesh zones for the Welcome-Duck study area                                    | 17 |
| Diagram 15: Modelled structures in the Welcome-Duck study area                            | 18 |
| Diagram 16: Burnie Tide Gauge (July 2000)                                                 | 19 |
| Diagram 17: RAFTS sub-catchment model setup for the Welcome-Duck study area               | 20 |
| Diagram 18: Flow comparison at Duck River at Sctochtown Road (left: RAF 2, right: RAF 1). | 21 |
| Diagram 19: Modelled peak flood depth in the upper reaches of Montagu River               | 22 |
| Diagram 20: Profile of the base DEM at Duck River u/s Scotchtown Road                     | 23 |
| Diagram 21: July 2000 flow comparison at Duck River u/s Scotchtown Road                   | 24 |
| Diagram 22: July 2000 water level comparison at Duck River u/s Scotchtown Road            | 25 |

# LIST OF ACRONYMS

| AEP        | Annual Exceedance Probability                                     |
|------------|-------------------------------------------------------------------|
| ALS        | Airborne Laser Scanning                                           |
| AMS        | Annual Maximum Series                                             |
| ARF        | Areal Reduction Factor                                            |
| ARR        | Australian Rainfall and Runoff                                    |
| ATP        | Areal Temporal Patterns                                           |
| AWAP       | Australian Water Availability Project                             |
| AWS        | Automatic Weather Station                                         |
| Bureau/BoM | Bureau of Meteorology                                             |
| С          | Lag parameter in WBNM                                             |
| CFEV       | Conservation of Freshwater Ecosystem Values (DPIPWE)              |
| CL         | Continuing Loss                                                   |
| DEM        | Digital Elevation Model                                           |
| DPIPWE     | Department of Primary Industries, Water and Environment           |
| DRM        | Direct Rainfall Method                                            |
| DTM        | Digital Terrain Model                                             |
| FFA        | Flood Frequency Analysis                                          |
| FLIKE      | Software for flood frequency analysis                             |
| FSL        | Full Supply Level                                                 |
| GIS        | Geographic Information System                                     |
| GEV        | Generalised Extreme Value distribution                            |
| GPS        | Global Positioning System                                         |
| HSA        | Human Settlement Area                                             |
| ICM        | Infoworks ICM software (Innovyze)                                 |
| IDW        | Inverse Distance Weighting                                        |
| IL         | Initial Loss                                                      |
| IFD        | Intensity, Frequency and Duration (Rainfall)                      |
| Lidar      | Light Detection and Ranging                                       |
| mAHD       | meters above Australian Height Datum                              |
| PERN       | Catchment routing parameter in RAFTS                              |
| Pluvi      | Pluviograph – Rain gauge with ability to record rain in real time |
| QAQC       | Quality assurance and quality control                             |
| R          | Channel routing parameter in WMAWater RAFTS WBNM hybrid model     |
| RAF        | RAFTS Adjustment Factor                                           |
| RAFTS      | hydrologic model                                                  |
| SCE        | Shuffled Complex Evolution                                        |
| SES        | State Emergency Service                                           |
| TUFLOW     | one-dimensional (1D) and two-dimensional (2D) flood and tide      |
|            | simulation software (hydrodynamic model)                          |
| WBNM       | Watershed Bounded Network Model (hydrologic model)                |



#### 1. INTRODUCTION

Flooding occurs regularly throughout Tasmania; the Bureau of Meteorology describes numerous major flood events that have occurred since the early 1800s. Following the 2016 Tasmanian floods, the need for state and local governments, communities and emergency response agencies to better understand flooding in Tasmania was identified. Improved flood intelligence would allow for targeted and appropriate investment in flood recovery and increased community resilience to future flood events. The Independent Review into the Tasmanian Floods of June and July 2016 found that there were gaps in flood studies and flood plans over Tasmania, both in comprehensiveness and currency.

The objectives of the Tasmanian Strategic Flood Mapping Project are to assist flood affected communities to recover from the 2016 floods through a better understanding of flood behaviour, and to increase the resilience of Tasmanian communities to future flood events. The targeted outcomes of the project are that post-flood recovery will be informed by up-to-date flood risk information, ownership of flood risk is appropriately allocated, flood risk can be included in investment decisions, and responsibility for flood mitigation costs can be appropriately allocated.

The Tasmanian Flood Mapping Project aims to address the objectives and outcomes by:

- providing communities with access to a high resolution digital terrain model that can be used for flood modelling, through collection of LiDAR data over Tasmania
- developing state-wide Strategic Flood Maps to support flood risk assessment and post event analysis and
- partnering with Local Government to deliver detailed flood studies and evacuation planning for communities with highest flood risk that do not have a current flood study.

This project addresses the second component of the Tasmanian Flood Mapping Project, the development of state-wide Strategic Flood Maps.

This report describes the calibration of hydrologic and hydrodynamic flood models for the Welcome-Duck study area.



#### 2. STUDY AREA

The Welcome-Duck study area is situated in the North-West of Tasmania. The study area includes three larger rivers: Welcome, Montagu and Duck rivers. The study area also includes several smaller watercourses that discharge directly into Bass Strait. The larger rivers rise in the small hills approximately 20-30 km inland from the north coast, and flow generally northwards to discharge into Bass Strait. The hills in the upper catchments are 100 m to 200 m in elevation and the rivers have gentle gradients. Much of the low lying agricultural areas in the Duck River catchment are prone to flooding during the winter months (DPIWE, 2003). The study area includes large areas of plantation forestry and forest reserves and cleared areas used for grazing and agriculture. The Duck Irrigation Scheme operates within the study area. The scheme has a capacity of 5,200 ML. Water is extracted for the scheme from the Duck River and Mill Creek in winter months and is stored within Mill Creek Dam. The scheme commenced in 2019 and supports pasture based enterprises, poppies, potatoes and other fresh vegetables through supply of irrigation water over summer (Tasmanian Irrigation, 2021).

The largest town in the study area is Smithton, located on the coast at the mouth of the Duck River. Smithton has a population of 3,881 people, based on 2016 census. Smaller towns in the study area include Irishtown and Marrawah.

Large floods in the study area include the July 2000 flood event.

The Welcome-Duck study area has an area of 1,800 km<sup>2</sup>. The Welcome-Duck study area and the available gauge information are shown in Figure 1 and land use in the study area is shown in Figure 2.

#### 3. AVAILABLE DATA

#### 3.1. Historic Flow Data and Level Data

There are four relevant flow gauges with data available in the Welcome-Duck study area, as shown in Table 1. These gauges are owned by DPIPWE, who supplied timeseries of flows for each site, and ratings and gaugings for some sites. These gauges are still operational. There are other historical gauges in the study area with very short records (one on the upper Montagu River at Togari, one further upstream on the Edith Creek, and one on the Duck at Poilinna Rd) that were not active during the calibration event, so these have not been further investigated.

| Gauge attribute                                  | Welcome River<br>at Woolnorth | Montagu River<br>at Stuarts Rd                                                                                                                       | Duck River u/s<br>Scotchtown Rd                                                                                                                   | Edith Creek<br>600m US Duck<br>Confluence |
|--------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Gauge number                                     | 14223-1                       | 14200-1                                                                                                                                              | 14214-1                                                                                                                                           | 14238-1                                   |
| Gauge abbreviated name                           | Welcome River<br>gauge        | Montagu River<br>gauge                                                                                                                               | Duck<br>River gauge                                                                                                                               | Edith Ck US<br>Duck                       |
| Start date                                       | 06/04/1981                    | 27/05/1965                                                                                                                                           | 23/04/1966                                                                                                                                        | 18/06/2008                                |
| End date                                         | Current                       | Current                                                                                                                                              | Current                                                                                                                                           | Current                                   |
| Latitude                                         | -40.77                        | -40.78                                                                                                                                               | -40.87                                                                                                                                            | -40.95                                    |
| Longitude                                        | 144.75                        | 144.93                                                                                                                                               | 145.11                                                                                                                                            | 145.07                                    |
| High flow rating quality                         | Fair - good                   | Fair - Good<br>high flow<br>gaugings out of<br>channel,<br>changes in<br>ratings over<br>time. Rating<br>extended using<br>local hydraulic<br>model. | Fair - Good high<br>flow gaugings<br>out of channel,<br>changes in<br>ratings over<br>time.<br>Rating extended<br>using local<br>hydraulic model. | Not known                                 |
| Used for calibration                             | Yes                           | Yes                                                                                                                                                  | Yes                                                                                                                                               | No                                        |
| Assumed local datum 0m<br>in AHD                 | N/A                           | N/A                                                                                                                                                  | 5.985                                                                                                                                             | N/A                                       |
| Highest Gauged Level (m<br>local datum)          | 1.21                          | 4.292                                                                                                                                                | 2.876                                                                                                                                             | N/A                                       |
| Highest recorded stage<br>height (m local datum) | 1.74                          | 4.58                                                                                                                                                 | 3.45                                                                                                                                              | 1.26                                      |
| Highest recorded flow<br>(m <sup>3</sup> /s)     | 22                            | 59                                                                                                                                                   | 100                                                                                                                                               | 4.5                                       |
| Highest recorded flow date                       | 27/07/2016*                   | 22/07/2000                                                                                                                                           | 21/07/2000                                                                                                                                        | 06/07/2015                                |

| Table 1: Flo | ow gauges |
|--------------|-----------|
|--------------|-----------|

\*This is a separate event from the July 2016 calibration supplied for this project in (which was on 12<sup>th</sup>-15<sup>th</sup> July)



#### 3.1.1. Calibration Event Data Availability

The major flood event with significant flows across the Welcome-Duck study area occurred July 2000, which was one of the additional calibration events identified (WMAwater 2021d). The largest flow on record at the Welcome River gauge is in July 2016 which is the month of one of the 13 flood events selected by the Bureau as calibration events for this project, however the Bureau event referred to the rainfall event in south and southwestern Tasmanian from about the 12<sup>th</sup> to the 15<sup>th</sup> of July and the Welcome River experienced its peak on the 27<sup>th</sup> of July. The rain provided by the Bureau for this project did not extend until later in the month so this event could not be used for calibration. July 2000 was the largest on record at the Duck River and Montagu River gauges and 5<sup>th</sup> largest at Welcome River gauge.

Table 2: Summary of the largest events in the Welcome-Duck study area used for model calibration.

| Event name | Used for calibration | Event peak flow (m <sup>3</sup> /s) (location)              |
|------------|----------------------|-------------------------------------------------------------|
| 2000_Jul   | Yes                  | 53 (Montagu River)<br>78 (Duck River)<br>16 (Welcome River) |

#### 3.1.2. Rating Curve Quality

The Montagu River at Stuarts Road site is well gauged, including gaugings out of the channel up to 44 m<sup>3</sup>/s. There has been a shift in the gaugings and ratings have changed over time (Diagram 1).



WMA water

Diagram 1: Montagu River at Stuarts Road gaugings and rating (supplied by DPIPWE)

The rating was changed during the July 2000 event, causing a step-change in flows obtained from DPIPWE data portal (Diagram 2). This can be seen in the sharp drop in flows at the peak of the event. This was not evident in the levels at these gauges Diagram 3. To improve the quality of the high flow rating at this site, a theoretical rating was developed using a local hydraulic model (WMAwater, 2021c, Diagram 5). This rating has been used in calibration.

Tasmanian Strategic Flood Map Welcome-Duck Catchment Model Calibration



WM<del>a</del> water

Diagram 2: Flows downloaded from DPIPWE data portal for July 2000 event (Source DPIPWE 2022).



Diagram 3: Montague River stage height and flow showing drop in flow not corresponding to change in stage height (Source DPIPWE 2022).

120038: Calibration Report\_Welcome-Duck\_March 2023.docx: 17 March 2023





Diagram 4: Montagu River at Stuarts Road revised rating (from WMAwater 2021c)

WMA water

The Duck River u/s Scotchtown Road gauge has some older high flow gaugings. There have been a range of ratings at the site, and there is a large range in the ratings in the higher flow range (Diagram 5).



Diagram 5: Duck River u/s Scotchtown Road ratings, current rating shown in red (screenshot from Bureau of Meteorology, 2021)



The rating at this site was also changed midway through the July 2000 event (Diagram 3). To improve the quality of the high flow rating at this site, a theoretical rating was developed using a local hydraulic model (WMAwater, 2021c, Diagram 6). This rating has been used in calibration.



Diagram 6: Duck River at Scotchtown Road revised rating (from WMAwater 2021c).

The Welcome River at Woolnorth gauge has been well gauged historically, including a gauging at approximately 12 m<sup>3</sup>/s in 1981. The highest gauging since 1991 is approximately 7 m<sup>3</sup>/s. Historic rating curves are reasonably consistent in the higher flow range (Diagram 7).



Diagram 7: Welcome River at Woolnorth ratings, current rating shown in red (screenshot from Bureau of Meteorology, 2021)



#### 3.2. Historic Rainfall Data

Rainfall data was provided by Bureau of Meteorology as part of the initial project data. The data provided included sub-daily rainfall timeseries data from four different sources: Automatic Weather Station (AWS) data, pluvio data, rolling accumulated rainfall from the Bureau's flood warning network, and 10 minutely accumulation from the Bureau's flood warning network. The datasets were in different formats and required processing to a common format before they could be used to produce rainfall inputs to the model. Rainfall data was provided for 13 events identified by the Bureau of Meteorology for use as calibration events for this project, although the 13 events were not significant events in the Welcome Duck study area (WMAwater, 2020). An additional calibration event was identified for this catchment, in July 2000 (WMAwater, 2021d).

The AWS and pluvio data were found to be more consistently reliable. Where multiple data sources were available at the same site, AWS or pluvio data were prioritised for use over the event or accum data. Data that was recorded less frequently than at 3 hour intervals was excluded from the analysis.

There are two sub-daily rain gauges within the Welcome-Duck study area with data available during the July 2000 event, and twelve daily gauges. The daily gauges are well spread over the study area, while the sub-daily rain gauges are in the lower catchments in the study area (Diagram 8). The gauges in and around the Welcome-Duck study area are shown in Figure 1.

|                                                              | July 2000 |
|--------------------------------------------------------------|-----------|
| Number of Sub-daily Stations Available within the study area | 2         |
| Number of daily Stations Available within the study area     | 12        |
| Number of sub-daily surrounding gauges ~15km                 | 1         |
| Number of daily surrounding gauges ~15km                     | 3         |
| Rainfall Totals                                              | 70-140 mm |
| Approx duration of rainfall event (hours)                    | 72        |

Table 3: Available Rainfall Information

\*The number of daily gauges does not include daily gauges co-located with an active sub-daily gauge



Diagram 8: Sub-daily rainfall gauges, July 2000 (from WMAwater, 2021d).

The daily and sub-daily rain gauge data were used to create rainfall surfaces for each of the selected calibration events using an inverse distance weighting method. The method is described in detail in WMAwater 2021a, and is summarised below.

- 1. Daily rainfall data from all gauges within Tasmania was extracted for each of the seven calibration events from 2007 2018
- 2. Rudimentary QAQC and infilling of daily record was undertaken
- 3. Daily rainfall surfaces for each event were fitted using all daily and available pluviograph data, using Inverse Distance Weighting (IDW)
- 4. Sub-catchment rainfall depths were calculated from all grid cells within the subcatchment using areal weighted averages
- 5. Daily data in each sub-catchment was disaggregated using the temporal pattern from gauge assigned using Thiessen polygon method.

The rainfall surface for the selected calibration event is shown in Figure 3.

#### **3.3.** Dam Information

There is one significant dam that was explicitly modelled in the Welcome-Duck study area, operated by Taswater. Details are shown in Table 4 (from DPIPWE, 2009).

| Name       | Storage Volume<br>(ML) | Storage<br>Elevation at<br>FSL | Crest Length<br>(m) | Spillway Width<br>(m) |
|------------|------------------------|--------------------------------|---------------------|-----------------------|
| Mikany Dam | 2741                   | 35.4                           | 400                 | 16                    |

Table 4: Dam information

#### 4. METHODOLOGY OVERVIEW

The hydrological and hydrodynamic model calibration methodology has been outlined in the Hydrology Methods Report (WMAwater, 2021a) and the Hydrodynamic Methods Report (WMAwater 2021b). Details on the methods are only included in this report where they deviate from the methods described in these reports or are specific for this catchment.

The modelling method includes the following steps:

- Data preparation
  - Extraction and collation of rainfall data for identified calibration events
  - Gridding rainfall data across each catchment
  - Extraction of flow data for identified calibration events at each flow site, and assessment of suitability of this data for calibration
- Hydrologic modelling
  - o Identification of flow gauge locations
  - Identification of dam and diversion locations
  - Sub-catchment delineation in GIS
  - o Inclusion of dam storage and spillway ratings where required and available
  - Event calibration for routing and losses using automated external RAFTS modelling tool. Output event sub-catchment rainfalls, routing parameters and event losses for input to ICM model
  - Running event calibration through ICM RAFTS model to provide sub-catchment pickups for direct input into ICM hydrodynamic model
  - As required, revise hydrologic parameters within ICM-RAFTS to obtain good match to historic flood information provided
  - Once a good match is achieved, provide ICM-RAFTS modified hydrologic parameters back to the external hydrologic model to ensure consistency
  - As required, confirm the response between the external hydrologic model and ICM hydrodynamic model is consistent to enable design event analysis
- Hydrodynamic modelling in ICM
  - Importing base DEM
  - Setting roughness values, referencing calibrated PERN value from hydrologic model
  - $\circ$  Meshing
  - Incorporation of structures
  - Setting up rainfall inputs (depth and temporal pattern), losses and dam/diversion outflows from the hydrologic model
  - Calibration model runs
  - Compare model results with hydrologic model runs and calibration points
- Model iteration (if necessary)
  - Adjust routing parameters values in both external and ICM RAFTS hydrologic model if necessary, based on results of hydrodynamic model calibration
  - Rerun hydrologic models for calibration events
  - Set roughness values in hydrodynamic model
  - o Rerun hydrodynamic model for calibration events



#### 5. HYDRODYNAMIC MODEL SETUP

#### 5.1. Digital Elevation Model (DEM)

The base dataset that was used for the digital elevation model (DEM) of the hydrodynamic model was the SES state-wide 10 m DEM merged with 2 m DEM subsets at the gauges (where available). 2 m DEM subsets were used at two of the four operational gauges in the study area, with the SES state-wide 10 m DEM used at the remaining gauges (Welcome River and Montagu River). The merged DEM was then clipped to the study area with a buffer zone to ensure 100% active mesh area in the model. Where no terrain information was available in the tidal zones, a ground level of -10 mAHD was applied in GIS to the clipped DEM. The resulting DEM is shown in Diagram 9.



Diagram 9: DEM of the Welcome-Duck study area

The SES state-wide 10 m DEM consists of a 'Default DTM' that is state-wide and a 'LiDAR DTM' that covers the areas where LiDAR data was available at the time, as shown in Diagram 10.



Diagram 10: 'Default DTM' extents for the Welcome-Duck study area

The majority of the DEM along Welcome River is covered by the poor quality 'Default DTM' and it was found that the modelled flow paths do not match the actual flow paths. The southern portion of catchment is diverting to the west rather than following the path of the Welcome River north. This means over 40% of the catchment area is incorrectly discharging into Ann Bay in the Southern Ocean instead of into Boullanger Bay in Bass Strait (Diagram 11). Additionally, the majority of flows to the east of the gauge are diverted directly north into the Harcus River rather than following the Welcome River west, this results in almost no flows reaching the Welcome River gauge as shown in Diagram 11. There are river improvement works in the area that are not well represented in the DEM.



Diagram 11: Welcome River catchment modelled flood extent

A review of the DEM along Montagu River found that the 10 km reach upstream of the Montagu River gauge abruptly transitions from the 'LiDAR DTM' to the poor quality 'Default DTM' at several locations. This is expected to impact the routing of the hydrodynamic model. In addition, the area just upstream of the gauge is covered by the 'Default DTM' and the modelled flow paths do not match the actual flow paths. This results in no flows reaching the gauge (as the flows are diverted to the east), as shown in Diagram 12.



Diagram 12: Montagu River catchment modelled flood extent

A review of the DEM along Duck River found that a breach was incorrectly applied to the river channel between the quarry in Smithton and the Duck River bridge, resulting in erroneous levels along the river channel in the order of -20 mAHD. This is not expected to impact the calibration of the hydrodynamic model as all calibration points are upstream of the area, however, should be addressed in design given the proximity to the population centres, should improved bathymetry data be available.

The poor quality DEM in parts of this study area means that it was not possible to undertake a credible calibration at the Welcome River and Montagu River gauges and that mapped flood extents do not reflect the true flow paths.

#### 5.2. Roughness

The base dataset that was used for the roughness of the hydrodynamic model was the SES statewide roughness grid. This dataset was converted to a set of polygons for each land use and linked to a corresponding friction value (as detailed in the Hydrodynamic Modelling Methods Report). The polygons were then cleaned in GIS to ensure that the geometry was valid before being imported into the hydrodynamic model.

It is noted that, at this stage, the roughness values for streams vary greatly with sections of Manning's n of 0.1 crossing streams in many locations. This issue is an artefact of the

simplification of the roughness layer when it is converted into triangles. Where the issue was severe, a continuous zone of single roughness of 0.05 for all upper streams was utilised.

During the calibration process, modifications were made to the roughness at the gauge supported by aerial imagery which identified that the area at and downstream of the gauge is constantly full of water. To represent this, the channel roughness at the gauge was decreased from the default of 0.05 to 0.02.

The resulting roughness layer is shown in Diagram 13.



Diagram 13: Roughness layer for the Welcome-Duck study area

#### 5.3. Meshing

Meshing in the hydrodynamic model was undertaken using mesh zones, with the following rules:

- Base mesh zone the default mesh size, set to a maximum of 2500 m<sup>2</sup> and a minimum of 400 m<sup>2</sup>
- Stream mesh zones set as an independent mesh zone with a maximum mesh size of 400 m<sup>2</sup> and a minimum of 100 m<sup>2</sup>
- Upper stream mesh zones streamlines of strahlar order 2-5 and strahlar order 6-8 were buffered by 10 m and 20 m either side of the centre line. These zones were then set to a maximum mesh size of 150 m<sup>2</sup> and a minimum of 100 m<sup>2</sup>. This process was done to ensure



that the meshing process did not result in artificial blocking of the flow paths along the upper streams.

 Human Settlement Areas and other areas of interest – set as an independent mesh zone with a maximum area of 100 m<sup>2</sup> and a minimum of 25 m<sup>2</sup>

The resulting mesh zones are shown in Diagram 14.



Diagram 14: Mesh zones for the Welcome-Duck study area

#### 5.4. Structures

Within the study area, four significant bridges were identified from the SES state-wide bridge database and these were modelled in the hydrodynamic model in the 2D domain using linear 2D bridge structures. Further discussion on this process is provided in the Hydrodynamic Modelling Methods Report (WMAwater, 2021b).

The bridges modelled included:

- Trowutta Road at Duck River (near Upper Scotchtown Road)
- Kubanks Road at Duck River
- Bass Highway at Duck River
- Duck River Bridge, Smithton



Within the study area, one significant culvert was identified and was modelled in the hydrodynamic model in the 1D domain (linked to the 2D domain). As detailed drawings were not available, the dimensions and inverts of the culvert was estimated from aerial imagery and the DEM.

The details of the culvert are as follows:

• Bass Highway at Deep Creek – assumed to be a 3/2700x2700 RCBC

The locations of the modelled structures are shown in Diagram 15.



Diagram 15: Modelled structures in the Welcome-Duck study area

#### 5.5. Dams

Mikany Dam was modelled in the hydrodynamic model in the 2D domain, assuming initial conditions at the full supply level of the dam. As detailed drawings were not available for this study, the dimensions of the spillway were estimated from available photography and the spillway was modelled assuming a broad-crested weir.

#### 5.6. Downstream Boundaries

Downstream boundaries were applied at the base of the model to provide the interaction with the tidal zone. Given the proximity of the Welcome-Duck study area to the Burnie Tide Gauge, real tide data was extracted for this study area for the July 2000 calibration event. This data was extracted at 60-minute time increments from the Bureau of Meteorology Australian Baseline Sea Level Monitoring Project Portal and was imported into the hydrodynamic model as a time varying boundary condition.



Missing data was found between 21 July 2000 to 11 August 2000 (which includes the peak of the July 2000 calibration event) and was inferred from the last recorded high and low tide. It is noted that the selection of the tailwater condition is not expected to impact the calibration of the hydrodynamic model as all calibration points are upstream of the tidal zone. Diagram 16 shows the tide data that was used for the July 2000 event.



Diagram 16: Burnie Tide Gauge (July 2000)

#### 5.7. Flow Application for Hydrodynamic Modelling

Two approaches were used for application of flow in ICM:

- ICM-RAFTS sub-catchment routing, applied to each sub-catchment in the model at the downstream end of the sub-catchment
- Direct rainfall to model overland flow (short duration events).

The reason for using two approaches is to enable the model to be run efficiently for longer durations by limiting the number of cells wet, focusing on the major tributary flooding while also ensuring the local areas in the upper tributaries are mapped for short duration flooding.

The two flow scenarios sit within the same ICM hydrodynamic model as alternative flow condition scenarios (base and direct rainfall). For the calibration events, only the ICM-RAFTS approach is used, where the rainfall information is derived from rainfall files created by the hydrologic model.

For the design events, an envelope of the ICM-RAFTS approach and the design rainfall approach will be used. Rainfall and temporal pattern information derived from the ARR datahub will be used to establish the design rainfall and temporal pattern information for the ICM-RAFTS approach and a synthetic, duration independent storm will be used to assess a range of storm durations and temporal patterns in a singular rainfall event for the design rainfall approach.



#### 5.7.1. ICM-RAFTS Sub-catchment Routing

For the ICM-RAFTS sub-catchment routing, the RAFTS model within ICM was used to calculate the hydrologic routing at each sub-catchment. Rainfalls, model information and model parameters developed through the external hydrologic model were imported into ICM through the open data input tool.

The information imported into ICM included:

- Sub-catchment name
- Slope
- PERN
- RAF
- Initial and Continuing Loss
- Sub-catchment rainfalls (for calibration events)

Each sub-catchment is connected directly to the 2D mesh surface at the downstream end of the catchment. The resulting RAFTS sub-catchment model setup is shown in Diagram 17. Figure A 1 and Figure A 2 show the hydrological soil groups used to distribute the CL and the average PERN used for each sub-catchment.



Diagram 17: RAFTS sub-catchment model setup for the Welcome-Duck study area



#### 6. CALIBRATION RESULTS

Calibration to Welcome River and Montagu River gauges was not able to be undertaken in the ICM model due to the DEM issues presented in Section 5.1. The hydrodynamic model has been calibrated to Duck River gauge. Calibration to the other gauges could be undertaken in ICM when improved topographic information is available. Initial calibration of the routing parameter and losses was undertaken at all gauge sites in the external hydrologic model.

#### 6.1. Sub-catchment Routing and Loss Parameters

The ICM model was run with the routing and loss parameters derived from the external hydrologic model and the calibration process was undertaken for the July 2000 calibration event. A spatially varying sub-catchment routing parameter was not found to be necessary to achieve a reasonable calibration to Duck River, and a single sub-catchment routing parameter was used (RAF of 2).

A RAF of 2 was assumed based on initial model runs which indicated that the routing within the sub-catchment component of the model was faster than the recorded catchment responses. Noting the presence of several large waterfalls and other significant grade variations in the catchment, it is likely the average slope of a number of catchments is over estimated, resulting in a need to offset this with a larger RAF.

A comparison of the selected RAF of 2 and a RAF of 1 at Duck River is shown in Diagram 18.



Diagram 18: Flow comparison at Duck River at Sctochtown Road (left: RAF 2, right: RAF 1)

Upon completion of the calibration process, the external hydrologic model and the hydrodynamic model were compared to ensure that the modelled flows are comparable. This is shown in Appendix C.

Differences in the external hydrologic model and the hydrodynamic model were noted in the upper reaches of Montagu River (e.g. WDk93 shown in Appendix C). It is noted that the upper reaches of Montagu River are not affected by the DEM issues presented in Section 5.1.

Review of the hydrodynamic model shows flows across the agricultural fields between WDk89 and WDk93 and the ponding of water at the Bass Highway, as shown in Diagram 19. Minor modifications were made to the hydrodynamic model to improve the local accuracy of the model,



however, were not able to reconcile the differences to the external hydrologic model. These modifications included adjusting the mesh zones of the model (to ensure that the main channel was covered by a high-resolution mesh) and carving out a channel in the 2D domain across the Bass Highway structure (to ensure the main river channel was not blocked).



Diagram 19: Modelled peak flood depth in the upper reaches of Montagu River

It is recommended that the channel routing in the external hydrologic model is revisited when the hydrodynamic model can be calibrated to the Montagu River gauge.

#### 6.2. Initial Conditions

Prefilling of the ICM model was not found to be necessary to achieve a reasonable calibration to the Duck River gauge. On occasion it is necessary to prefill hydraulic models to manage the loss of flood volume due to local depression storage. This scenario however may result in filling of floodplain storage and as such should only be considered where necessary. To ensure there was no incidental filling of floodplain storage in this model it has been run without prefilling.

#### 6.3. Gauge Results

Historic event information was available for the July 2000 event at the Duck River gauge and is presented herein. Mapping of the peak flood depths from the hydrodynamic model for the July 2000 calibration event is shown in Figure 4, as discussed in Section 5.1, this includes modelled flows in the Welcome and Montague River which do not align with the known paths of these rivers.

#### 6.3.1. Duck River u/s Scotchtown Road

The modelled peak flow and level for the July 2000 event at the Duck River gauge shows a good match to the recorded peak flow and level (Table 5). The modelled hydrograph and water level response also shows a good match to the timing and shape of the recorded flows and levels, as shown in Diagram 21 and Diagram 22.

A gauge zero of 5.785 mAHD was provided for this gauge from the DPIPWE database. This was adjusted to 5.985 mAHD to better align with the DEM of the hydrodynamic model and align the two rating curves at the location.

While the model appears to respond reasonably well, it is noted that a review of the base DEM at the gauge indicated elevated levels along the river channel. As shown in Diagram 20, it appears that the base DEM has captured the water level in the river channel (set by the weir control for the gauge), instead of the bathymetry of the river channel. No other sources of data were available as part of the project to otherwise inform the bathymetry of the river channel.



Diagram 20: Profile of the base DEM at Duck River u/s Scotchtown Road

Given the good match to the recorded levels with the current model calibration and the lack of data to otherwise inform the bathymetry of the river channel, no modifications were made to the base DEM. It is recommended that the current model calibration is revisited when improved bathymetry data is available, to ensure that it is appropriate with a revised representation of the river channel and weir control for the gauge.

A comparison of the gauge rating curve and the modelled rating curve is shown in Appendix D. The lack of definition of channel bathymetry impact the modelled rating at lower flows.

| Statistic                         | July 2000 |
|-----------------------------------|-----------|
| IL (mm)                           | 74        |
| Average CL (mm/h)                 | 0         |
| RAF                               | 2         |
| Modelled Peak (m <sup>3</sup> /s) | 82        |
| Observed Peak (m <sup>3</sup> /s) | 78        |
| Peak % difference                 | +5%       |
| Modelled Volume (ML)              | 13,422    |
| Observed Volume (ML)              | 16,062    |
| Volume % difference               | -16%      |
| Modelled peak (mAHD)              | 9.52      |
| Observed peak (mAHD)              | 9.43      |
| Peak difference (m)               | +0.09m    |





Diagram 21: July 2000 flow comparison at Duck River u/s Scotchtown Road



Diagram 22: July 2000 water level comparison at Duck River u/s Scotchtown Road



#### 6.4. Identified Issues

The following issues have been identified, which should be investigated further if future detailed analysis is undertaken:

- The hydrodynamic model was not able to be calibrated to Welcome River and Montagu River gauges due to the DEM issues presented in Section 5.1 and mapped flow paths do not follow the actual watercourses. If high resolution topographic information is obtained in the future, these areas should be reviewed in detail to ensure appropriate flow and level replication is achieved.
- Due to the limited number of events and locations available for calibration, it is considered that while the model appears to respond appropriately, there is insufficient information to provide a high level of confidence in the model calibration. The model is considered to be valid for Duck River based on the available information, however, future detailed analysis should attempt the calibration of other events and locations to improve the confidence in the model calibration.
- If available, the representation of the significant structures across the Bass Highway should be updated with as constructed or surveyed data instead of the estimated parameters that are currently used.
- If available, the representation of the rivers and channels that that are frequently submerged (such as the river channel upstream and downstream of the weir at the Duck River gauge) should be updated with improved bathymetry data.



#### 7. UNCERTAINTY ASESSMENT

Significant flows were not recorded in the catchment area for any of the 13 flood events selected by the Bureau as calibration events for this project. An additional event was used for calibration, in July 2000.

Flow data was available at three gauges for the calibration events, and these were used for calibration of the external hydrologic model. The ICM model was calibrated to the Duck River u/s Scotchtown Road gauge. The ICM model could not be calibrated at gauges on the Welcome River and Montagu River due to issues in the DEM. Large areas of the DEM in this study area are covered by the poor quality 'Default DTM' and it was found that the modelled flow paths do not match the actual flow paths.

Due to the limited number of events and locations available for calibration, it is considered that while the model appears to respond appropriately, there is insufficient information to provide a high level of confidence in the model calibration. The model is considered to be valid based on the available information, however, future detailed analysis should attempt the calibration of other events and locations to improve the confidence in the model calibration.

There were no flood extents or depths available in this catchment.

The uncertainty assessment for the modelling is shown in Table 6 and Appendix B.

| Category                              | Quality statement                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrology – rainfall input<br>quality | The quality of the rainfall data is generally good. There are two sub-daily raingauges operating in the lower region of the study area for the calibration event and a good spread of daily gauges within the study area. There is some uncertainty in event temporal patterns in the upper catchment, given the lack of sub-daily raingauges in this area. |
| Hydrology – observed<br>flows         | The rating for the Duck River gauge used in calibration is considered to be good based on use of a theoretical rating developed using a local hydraulic model, which was used in calibration.                                                                                                                                                               |
| Hydrology – calibration<br>events     | The July 2000 event was the largest on record at the Duck River and<br>Montagu River gauges. Only one event was used for calibration in this<br>catchment. None of the events identified by the Bureau of Meteorology for<br>use in this study were significant in this catchment.                                                                          |
| Hydrology – calibration<br>results    | The hydrology calibration was considered to provide an excellent match to peak flows at the Duck River gauge and a very good match to observed volume and hydrograph shape.                                                                                                                                                                                 |
| DTM definition                        | Large areas of the DEM in this study area are covered by the poor quality<br>'Default DTM' and it was found that the modelled flow paths do not match<br>the actual flow paths. The DEM is considered to be poor for this study<br>area.                                                                                                                    |

 Table 6: Uncertainty assessment for Welcome Duck study area model



| Category                   | Quality statement                                                      |
|----------------------------|------------------------------------------------------------------------|
|                            | No bathymetric data was available and waterway definition was based on |
| DTM waterways              | the LiDAR to water surface or the default DEM. Waterway definitely was |
|                            | considered to be poor.                                                 |
| Hydrodynamic –             | Modelled peaks were considered to be excellent match to the observed   |
| calibration results, peak  | peak at the Duck River gauge, with the modelled peak within 0.1 m of   |
| levels                     | observed.                                                              |
| Hydrodynamic –             |                                                                        |
| calibration results, flood | No flood extents were available in this study area                     |
| extents                    |                                                                        |
| Hydrodynamic –             |                                                                        |
| calibration results, flood | No flood depths were available in this study area                      |
| depths                     |                                                                        |



#### 8. REFERENCES

Babister, M., Trim, A., Testoni, I. & Retallick, M (2016): The Australian Rainfall & Runoff Datahub 37<sup>th</sup> Hydrology and Water Resources Symposium Queenstown NZ, 2016 available at <u>http://data.arr-software.org/</u>

Ball J, Babister M, Nathan R, Weeks W, Weinmann E, Retallick M, Testoni I, (2019): Editors Australian Rainfall and Runoff: A Guide to Flood Estimation Commonwealth of Australia, Australia, 2019

Bureau of Meteorology (2019): 2016 Rainfall IFD Data System. Bureau of Meteorology, Victoria, Australia URL: http://www.bom.gov.au/water/designRainfalls/revised-ifd/

Bureau of Meteorology (2020): Rainfall Map Information. Bureau of Meteorology, Victoria, Australia URL: <u>http://www.bom.gov.au/climate/austmaps/about-rain-maps.shtml</u>

Bureau of Meteorology (2021): Water Data Online. http://www.bom.gov.au/waterdata/

DPIWE (2003): State of Rivers Report for the Duck River Catchment, Water Assessment and Planning Branch, DPIWE, Report WAP 03/08, December 2003.

DPIPWE (2009): Dam Permit Locations – The List Map. <u>https://www</u>.thelist.tas.gov.au/app/content/data/geo-meta-datarecord?detailRecordUID=94cdc4f5-07f6-4ac7-9db1-0c21d3715e32

DPIPWE (2019): Hydrologic Soil Groups of Tasmania (Unpublished). Department of Primary Industries and Water, Hobart, Tasmania. Created March 2019

DPIPWE (2022): Tasmania Water Information Web Portal. Department of Primary Industries and Water, Hobart, Tasmania.

Tasmanian Irrigation (2021): Active Schemes List – Scheme Snapshots. <u>https://www</u>.tasmanianirrigation.com.au/active-schemes-map

WMAwater (2020): Tasmanian Strategic Flood Map Data Review, September 2020. Report for State Emergency Service, Tasmania.

WMAwater (2021a): Tasmanian Strategic Flood Map Hydrology Methods Report, August 2021. Report for State Emergency Service, Tasmania.

WMAwater (2021b): Tasmanian Strategic Flood Map Hydrodynamic Model Methods Report, August 2021. Report for State Emergency Service, Tasmania.

WMAwater (2021c): Tasmanian Strategic Flood Map, Flow Gauge Rating Revision, Draft, May 2021.



WMAwater (2021d): Tasmanian Strategic Flood Map, Additional Calibration Event Rainfalls Report, November 20201. Report for State Emergency Service, Tasmania.







J:\Jobs\120038\GIS\Group\_1\_Catchment\_Figures\V2\Figure01\_Welcome-Duck\_Study\_Area.mxd



FIGURE 03 WELCOME-DUCK STUDY AREA RAINFALL 2000\_JUL





![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

# APPENDIX A. AVALIABLE DATA

A.1. Sub catchment data

#### FIGURE A1 HYDROLOGICAL SOIL GROUP MAPPING DOMINANT SUBCATCHMENT SOIL INFILTRATION RATE

![](_page_44_Figure_1.jpeg)

#### FIGURE A2 WELCOME-DUCK STUDY AREA SUBCATCHMENT AVERAGE PERN

![](_page_45_Figure_1.jpeg)

![](_page_46_Picture_0.jpeg)

Appendix B

![](_page_47_Picture_1.jpeg)

#### APPENDIX B. UNCERTAINTY ANALYSIS

#### **B.1. Hydrologic Model Uncertainty**

Table B 1 shows the calibration event rating. Green shading is used to highlight relevant statements.

Table B 1: Hydrology calibration event rating

| Category               | Rating                     |                            |                                         |                             |                                |  |  |
|------------------------|----------------------------|----------------------------|-----------------------------------------|-----------------------------|--------------------------------|--|--|
| Calegory               | Poor                       | Fair                       | Good                                    | Very good                   | Excellent                      |  |  |
|                        | Nearest pluvi > 15 km      | Nearest pluvi > 15km from  | Pluvi within the catchment              | 1 pluvi within or very near | 1 pluvi within catchment       |  |  |
|                        | from catchment in          | the catchment in similar   | or within 15km                          | catchment for each          | for each 150km <sup>2</sup> of |  |  |
|                        | unrepresentative location  | climate area               |                                         | 300km2 of catchment area    | catchment area (spaced         |  |  |
|                        |                            |                            |                                         |                             | out)                           |  |  |
|                        | No daily rainfall sites    | No daily rainfall sites    | One daily rainfall site                 | multiple gauges within      | multiple gauges within         |  |  |
| Painfall input quality | within 15 km of catchment  | within 10 km of catchment  | within 10 km of catchment               | 15km in different           | 10km in different              |  |  |
|                        |                            |                            | in similar climate area                 | directions                  | directions                     |  |  |
|                        | Known high rainfall        | Known rainfall gradients   | No known large spatial                  | Event rainfall known to be  | Event rainfall known to be     |  |  |
|                        | gradients (from BoM or     | for calibration events     | variation in event rainfall             | generally spatially uniform | spatially uniform if           |  |  |
|                        | investigation of           |                            | relative to gauges                      | if catchment is large, or   | catchment is large, or well    |  |  |
|                        | surrounding gauges)        |                            |                                         | well represented by         | represented by raingauges      |  |  |
|                        |                            |                            |                                         | raingauges                  |                                |  |  |
|                        | Highest gauging within     | Rating or gauging info     | Calibration event is out of             | Calibration event is out of | Calibration event is out of    |  |  |
|                        | channel and flow breaks    | unavailable, but flow      | channel, good set of                    | channel, site has been      | channel, site has been         |  |  |
|                        | out of channel at high     | contained in channel.      | gaugings but no gaugings                | gauged out of channel       | gauged during applicable       |  |  |
|                        | flows.                     |                            | out of channel                          | during different rating     | rating period out of           |  |  |
| Observed flows         |                            |                            |                                         | period (with changes at     | channel                        |  |  |
|                        |                            |                            |                                         | top end)                    |                                |  |  |
|                        | Rating extrapolated with   | Rating extrapolated with   | Rating shows                            | Rating shows                | Rating shows                   |  |  |
|                        | no consideration for shape | no consideration for shape | consideration to shape of               | consideration to shape of   | consideration to shape of      |  |  |
|                        | of cross section           | of cross section           | cross section                           | cross section               | cross section                  |  |  |
|                        |                            | Between 20% and 10%        | Between 10% and 5%                      | Between 5% and 2% AEP       | Larger than 2% AEP or          |  |  |
| Calibration events     | Smaller than 20% AEP       | AFP                        |                                         | or within largest 4 events  | within largest 2 events on     |  |  |
|                        | AEF                        |                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | on record                   | record                         |  |  |

N WM awater

Table B 2 shows the hydrology calibration quality rating. Green shading is used to highlight relevant statements:

#### Table B 2: Hydrology calibration quality rating

| Category                                  | Rating                 |                        |                        |                        |                          |  |
|-------------------------------------------|------------------------|------------------------|------------------------|------------------------|--------------------------|--|
| Category                                  | Poor                   | Fair                   | Good                   | Very good              | Excellent                |  |
|                                           | Peak varies by more    | Peak within 30% of     | Peak within 20% of     | Peak within 15% of     | Peak within 10% of       |  |
| Hydrology calibration results – peak flow | than 30%               | observed               | observed               | observed               | observed                 |  |
|                                           |                        |                        |                        |                        |                          |  |
| Hydrology calibration results             | Volume varies by       | Volume within 30% of   | Volume within 20% of   | Volume within 15% of   | Volume within 10% of     |  |
| hydrograph yolumo                         | more than 30%          | observed               | observed               | observed               | observed                 |  |
|                                           |                        |                        |                        |                        |                          |  |
|                                           | Poor match to shape –  | Modelled and           | General                | Shape of the event     | Shape of the event       |  |
|                                           | modelled event routing | observed hydrographs   | characteristics of the | generally matches well | matches well including   |  |
| Hydrology calibration results             | does not match         | have some similarities | modelled and           | in rising and falling  | rising and falling limbs |  |
| hydrograph shape                          | observed               | in shape               | observed hydrograph    | limbs                  | and recession            |  |
|                                           |                        |                        | shape match in either  |                        |                          |  |
|                                           |                        |                        | rising limb or falling |                        |                          |  |
|                                           |                        |                        | limb                   |                        |                          |  |

![](_page_49_Figure_0.jpeg)

#### **B.2. DTM Uncertainty**

The overall study area DTM quality rating is shown in Table B 3 with relevant statements highlighted with green shading.

#### Table B 3: DTM rating

| Category       |                        | Rating                    |                    |                         |                            |  |  |
|----------------|------------------------|---------------------------|--------------------|-------------------------|----------------------------|--|--|
| Category       | Poor                   | Fair                      | Good               | Very good               | Excellent                  |  |  |
|                | Low resolution         | Low resolution            | High resolution at | High resolution in HSA  | High resolution in >60% of |  |  |
| DTM definition |                        |                           | HSA/gauges         |                         | catchment                  |  |  |
|                | Minimal Ground Control | Minimal GCP               | Reasonable GCP     | Good GCP coverage       | Good GCP coverage          |  |  |
|                | Points (GCP)           |                           | coverage           |                         |                            |  |  |
|                | Bathymetrical data     | Bathymetrical data poor – | Bathymetrical data | Bathymetrical data good | Detailed bathymetrical     |  |  |
| DTM waterways  | unavailable            | e.g. LiDAR with estimated | reasonable         |                         | survey data available      |  |  |
|                |                        | bathymetric information   |                    |                         |                            |  |  |

N WMawater

#### **B.3. Hydrodynamic Modelling Uncertainty**

The hydrodynamic calibration event rating is shown in Table B 4, with relevant statements highlighted in green.

| Category                 | Rating                 |                           |                                               |                                        |                            |  |  |
|--------------------------|------------------------|---------------------------|-----------------------------------------------|----------------------------------------|----------------------------|--|--|
| Calegory                 | Poor                   | Fair                      | Good                                          | Very good                              | Excellent                  |  |  |
|                          | Water level gauge data | Water level gauge data    | Water level gauge data                        | Water level gauge data                 | Water level gauge data     |  |  |
|                          | not available          | available                 | available                                     | available                              | available                  |  |  |
|                          |                        | gauge zero level inferred | gauge zero level is                           | gauge zero level is                    | gauge zero level is        |  |  |
| Calibration flood levels |                        |                           | known                                         | known                                  | known                      |  |  |
|                          |                        | Sporadic water level      | Reasonable confidence                         | Good confidence in                     | Gauge is known to be       |  |  |
|                          |                        | gauge data available for  | in gauged levels based                        | gauged levels based on                 | regularly calibrated and   |  |  |
|                          |                        | event, low confidence in  | on review of historic data                    | review of historic data                | of good quality (e.g.      |  |  |
|                          |                        | data                      |                                               |                                        | BOM flood warning sites)   |  |  |
|                          | No survey extent       | Survey extent available   | Survey extent available                       | Survey extent available                | Survey extent available    |  |  |
|                          | available              | with high uncertainty –   | with medium uncertainty                       | with reasonable certainty              | with survey points in all  |  |  |
| Calibration flood depths |                        | few survey points and     | <ul> <li>survey points in critical</li> </ul> | <ul> <li>many survey points</li> </ul> | critical areas and limited |  |  |
|                          |                        | mostly interpolated       | areas, significant areas                      | and limited interpolation              | interpolation              |  |  |
|                          |                        |                           | interpolated                                  |                                        |                            |  |  |

| Table B 4: H | ydrodynan | nic calibration | event rating |
|--------------|-----------|-----------------|--------------|
|              |           |                 |              |

Ň WMa water

The hydrodynamic calibration event rating is shown in Table B 5. Green shading is used to highlight relevant statements.

#### Table B 5: Hydrodynamic calibration quality rating

| Category                               | Rating                 |                        |                        |                        |                        |  |
|----------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--|
| Category                               | Poor                   | Fair                   | Good                   | Very good              | Excellent              |  |
| Hydrodynamic calibration - peak levels | Peak level > +/- 1m    | Peak level within +/-  | Peak within +/-0.5m    | Peak within +/-0.3m    | Peak within +/- 0.3m   |  |
| Tyurouynamic calibration - peak levels | of observed            | 0.5m of observed       | of observed            | of observed            | of observed            |  |
| Hydrodynamic calibration – flood       | Extent > 50m           | Extent lies within +/- |  |
| extents                                | difference from        | 50m of recorded        | 20m of recorded        | 10m of recorded        | 5m of recorded         |  |
|                                        | Depth within $> \pm/-$ | Depth within +/- 1 m   | Depth within +/-       | Depth within $\pm/-$   | Depth within +/-       |  |
| Hydrodynamic calibration - depths      | 1m of Survey           | of Survey              | 0.5m of Survey         | 0.3m of Survey         | 0.3m of Survey         |  |

![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_1.jpeg)

# APPENDIX C.EXTERNAL HYDROLOGY MODEL AND ICMHYDRODYNAMIC MODEL COMPARISON

![](_page_53_Figure_3.jpeg)

![](_page_53_Figure_4.jpeg)

![](_page_54_Figure_2.jpeg)

![](_page_55_Picture_0.jpeg)

![](_page_55_Figure_2.jpeg)

![](_page_56_Picture_0.jpeg)

![](_page_56_Picture_1.jpeg)

![](_page_57_Picture_0.jpeg)

#### APPENDIX D.

**RATING CURVE COMPARISON** 

![](_page_57_Figure_4.jpeg)

Figure D 1: Rating comparison - Duck River u/s Scotchtown Road Bridge, July 2000 event